The second TIPROT variety - TIPROT 2

TIPROT 2 is produced according to the“folding – thermal fixing (type„STRUTO”) technology“, as a result of which a thick vertical lapped nonwoven material is ob- tained. The principal difference compared to TIPROT 1 technology is the presence of a carded web folding module.Through a special folding disc device, the initially not structured wool forms folds on the conveyor belt and in the obtained product the fibres are arranged transversally to the substrate. In the thermal treatment chamber the fold base is “glued” to a supporting needle-punched non-woven textile (having weight per unit area of 100 g/m2). The fibrous layer created by means of this method shows significantly increased compressive strength and flexural resistance, as well as a higher degree of strain recovery.

TIPROT 2 manufacturing flowchart.

TIPROT features a fibrous structure whereby the space among fibres is occupied by air. Under stationary conditions, the air has very low ther- mal conductivity, i.e. it is a very good thermal insulator. The structure (having impact on air convection) of TIPROT and its bulk density, as well the fibres’ composition, thermal and physical properties, are of the greatest importance for the thermal Insulating capacity of TIPROT. TIPROT does not demonstrate a linear relationship between the bulk density and the thermal conductivity. The TIPROT compositional and structural parameters are not optimized so that low thermal conductivity at good construction properties may be ensured – Table 1.

The thermal conductivity value for each prototype is determined based on measurements of 3 (three) different test specimens taken at the beginning, in the middle and at the end of the production process of 500 sq.m of TIPROT 1 and TIPROT 2. The thermal conductivity is measured and recorded according to BDS EN 12 667 under the following conditions: average temperature +10оС and equilibrium moisture content in the specimens at a relative humidity of 50%.

The thermal conductivity of TIPROT is of the order of 0,036 – 0, 038W/(m.K) and characterizes it as a very efficient thermal Insulating material which is appropriate for thermal insulation of building envelope elements – Table 1.
Therefore, a thermal insulation consisting of 2 or 3 layers of TIPROT (single layer thickness of 45 mm) will achieve (and exceed) the reference values of thermal transmittance coefficient stipulated in Regulation No.7 dated 2004 on the energy efficiency of buildings for the different envelope ele-
ments. element to “breathe” – Table 1.
Among the attractive thermal properties of TIPROT, one should emphasize the high water vapour permeability which allows the insulated element to “breathe” – Table 1.

Table 1. Basic thermal properties of TIPROT

To good environmental performances the lack of hazard for people’s health and the environment during the con- struction and use stages of dwellings has to be added – if the recommended conditions for storage, installation and operation are respected, – TIPROTs do not release toxic gases, hazardous substance emissions, volatile organic compounds (VOC)k greenhouse gases or hazardous particles to the indoor or outdoor environment, there is no hazardous radiation either.


Due to the raw material peculiarities, in TIPROT there is some risk for mould growth of the most common strains living in the dwellings – Aspergillus niger, Aspergillus fumigates, Trichoderma viride and Penicillium sp. In case the moisture content of TIPROT is higher than the equilibrium value under normal conditions of use, the TIPROT dehumidification shall be provided (by ventilation and or drying) so that mould formation is avoided. The most efficient protection of TIPROT against these strains is provided by using substances called antimicrobials /biocides/ which take part in the chemical reaction in the cell membrane and thus, stop the microorganism metabolic process and lead to the destruction of the microorganisms. Some of the most polyvalent products which do not contain chlorine and are not hazardous for the environment and people’s health are the quaternary ammonium salts A small amount (less than 1% by weight) of production waste is generated during the manufactur- ing of TIPROT. That waste is mainly in the form of fibres and is to be managed as non-hazardous waste – it is gathered through air ducts and packed in bales. It has a high energy potential and may be used as a fuel (RDF). It will be forwarded to persons having a permission for execution of activity with code R1 (Utilization of waste mainly as fuel or another method for production of energy), as per art.35 of the Waste Management Act.


To minimise the construction waste during installation of TIPROT, the material has to be cut-out using appropriate means for cutting. This construction waste coming from of TIPROT may be collected separately under code 170604 (Insulating materials). In case of demolition/deconstruction of a building where TIPROT are used, they may be disassembled and may un- dergo a treatment for either reuse or recycling.